If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-36x+1=0
a = 8; b = -36; c = +1;
Δ = b2-4ac
Δ = -362-4·8·1
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{79}}{2*8}=\frac{36-4\sqrt{79}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{79}}{2*8}=\frac{36+4\sqrt{79}}{16} $
| 18=n/3+15 | | -5/7=1/2u-2/3 | | -3^2+74=2-x^2 | | |3x-1|=2 | | 9(p4)=18 | | 10x+5(16-x)=115 | | 3x2+6x−2=0 | | 3y-12=3y= | | t-5.3=-3.3 | | 6x²+15x=0 | | 4+3m=5m-6 | | 2/3c-12=8 | | 2(8)-5y=1 | | 1-n=5+n | | w2-5w-6=0 | | 11x-11=6x-1 | | 11x=25/2 | | -5n-2=-4n-4 | | 2x+12=-8x-18 | | -12-3x=-2+2x | | 4y-9y=-55 | | 5m+3m=-11-3m | | 2x+12=-8-18 | | -5(8-2z)+4(7-z)=7(8+z)-3 | | 1-3n=10+6n | | 3x+2=16, | | 1-2k=-7+2k | | 3x-2/5-2x+1/10=6x-3/2-4 | | -5b-2b=-3b+12 | | -5b-2b=-3b | | 2k+2=-4+5k | | 5(3x-1)=-80 |